Morocco-UK Power Project
The Xlinks Morocco-UK Power Project will be a new electricity generation facility entirely powered by solar and wind energy combined with a battery storage facility. Located in Morocco’s renewable energy rich region of Guelmim Oued Noun, it will cover an approximate area of 1,500km2 and will be connected exclusively to Great Britain via 3,800km HVDC sub-sea cables.
This “first of a kind” project will generate 10.5GW of zero carbon electricity from the sun and wind to deliver 3.6GW of reliable energy for an average of 20+ hours a day. This is enough to provide low-cost, clean power to over 7 million British homes by 2030. Once complete, the project will be capable of supplying 8 percent of Great Britain’s electricity needs.
Alongside the consistent output from its solar panels and wind turbines, an onsite 20GWh/5GW battery facility provide sufficient storage to reliably deliver each and every day, a dedicated, near-constant source of flexible and predictable clean energy for Britain, designed to complement the renewable energy already generated across the UK.
Four cables, each 3,800km long form the twin 1.8GW HVDC subsea cable systems that will follow the shallow water route from the Moroccan site to a grid location in Great Britain, passing Spain, Portugal, and France.
Generation
The Morocco-UK Power Project will be powered by a wind and solar farm, approximately 1,500km2 in size, within Morocco’s Guelmim Oued Noun region. The wind farm will utilise the reliable Trade Winds in the region, which are driven by the temperature differential between the Atlantic Ocean and African continent. The windspeed at the generation site increases throughout the late afternoon and evening, ensuring power can be delivered to Britain during times of peak demand.
The solar photovoltaic (PV) farm will cover approximately 200km2 and track the sun from east to west throughout the day. This will not only maximise the output of the solar farm, but it will also increase the output early in the morning and late in the afternoon, providing the most consistent generation profile to Britain. Although the project will benefit from the most advanced solar panel designs, they will work in the same way as the ones installed on people’s houses, throughout the UK, and existing generation sites within Morocco. However, the increased solar resource means that the same PV panels generate approximately three times more power in Morocco than they would in the UK. Importantly, the solar panels will generate as much as five times more power from January to March than those in the UK, which will help to keep the lights on and homes warm in Britain throughout the coldest winter days.
Storage
The project will benefit from a 20GWh/5GW battery facility, which will provide confidence that the power generated can be stored and delivered to Britain at the times when it is most needed. This will primarily be provided by Lithium-ion batteries like those used in electric cars, home battery systems and utility scale storage projects throughout the world.
These batteries will also allow Xlinks to install more solar PV systems and wind generation, which will maximise the use of the subsea transmission system. Delivering an average of 20+ hours a day at full power reduces the cost of sending per unit of electricity delivered to Britain. It also provides National Grid with the confidence that the project will be powering Britain even at times of low wind and low solar output across Northern Europe.
HVDC System
To allow for electricity transfer, Xlinks is also installing a transmission system from the generation site in Morocco to Britain, most of it across the ocean. The power generated will be transmitted directly to Britain without connection to the Moroccan, Spanish, Portuguese, or French transmission networks. This provides confidence that no matter what is happening on any electricity networks, Britain will have exclusive access to reliable power from the Moroccan wind and solar resources.
The transmission system will use High Voltage Direct Current (HVDC) cables to send the power from Morocco to Britain. HVDC technology is now well tried and tested as reliable and more cost competitive for a large volume of electron transfer across longer distances, than the High Voltage Alternating Current (HVAC) technology typically used for transmission systems within countries.
Converter stations will be used to change the HVAC power at the generation site in Morocco to HVDC, which is then sent through the subsea cable with very low losses before another converter station in Britain changes the HVDC power back to HVAC, ready to be injected into the British transmission network. While the Xlinks Morocco-UK Power Project subsea cable is significantly longer than existing interconnectors, the HVDC technology is the same proven technology used for connecting Britain and other European countries, or the technology proposed for the interconnector between Morocco and Portugal.
Xlinks